Big data (EN)
2019/2020- Formål
The course is designed to provide students with a comprehensive understanding of big data tools and techniques, related issues and the different kinds of big data ecosystems that can be used to support advanced data analytics. While the course considers Big Data management frameworks in general, it focuses on the Hadoop open source distributed data storage and processing platform and its underpinning sub-systems. Moreover, the course aims at providing students with a critical awareness of how big-data systems support data driven decision-making.
Viden
Course Aims
• To provide students with in depth knowledge of Big Data, the related relevant concepts and the technologies involved
• To provide students with a comprehensive understanding of an open source software framework for distributed data storage and processing
• To allow students to develop practical solutions to big data problems
• To provide students with the basic capability to integrate and deploy Big Data management systems in the context of enterprisesAt the end of the course, students will have comprehensive knowledge and critical understanding of:
Færdigheder
• the theories, models and frameworks underpinning the concept of Big Data
• how to apply the standard Big Data techniques to design and implement IT systems that support business analytics
• an open source software framework for distributed data storage and distributed processing, and its practical application
• the issues involved in the deployment of distributed data processing pipelines
• Big Data techniques in the wider context such as with respect to enterprise deployment and data securityAt the end of the course, students will have acquired the skills to:
Kompetencer
• design and implement IT systems that support business analytics using a Big Data ecosystem
• master an open source software framework for distributed data storage and distributed processing
• deploy distributed data processing pipelinesAt the end of the course, students will have acquired the competencies to:
• analyze a development request with a view to constructing a Big Data ecosystem
• select and apply suitable technologies for the development of IT systems that support business analytics - Undervisningsform og udfoldelse
af læringsmål The teaching is organised as a variation between class teaching, guest lecturing, company visits, group project work and individual work. The learning is most often problem-based and cross-disciplinary and always practise-oriented. In addition to learning the subject, the student will gain the competences to work individually and in collaboration with others.
The common aim of the activities is always to set clear intended learning objectives. - Prøve
Læringsmålene for prøven er identiske med fagets/fagenes læringsmål
Faget prøvesFaget/modulet prøves selvstændigtPrøveformMundtlig prøveIndividuel eller gruppeprøveIndividuelAnvendt sprog til prøvenEngelskVarighedPrøven startes med en fremlæggelse på 10 minutter. Derefter eksamineres den studerende 20 minutter inkl. votering.Bedømmelsesform7-trins skalaBedømmer(e)Intern censurKriterier for prøvevurderingDer gives én samlet karakter ud fra en helhedsvurdering af fremlæggelsen og den efterfølgende eksamination.
På faget Big data (EN) modtager du 68 timers undervisning, hvilket svarer til 90 lektioner (1 lektion = 45 min.) og 25% af din samlede arbejdsbelastning på faget.
Undervisningen vil primært bestå af følgende aktiviteter: klasseundervisning.
Forberedelsen vil primært bestå af følgende aktiviteter: læsning af egne noter, læsning af pensum, prøve, forberedelse til prøve.
Læs om KEAs studieaktivitetsmodel
*KEA kan fravige det angivne timetal, hvis det er begrundet i særlige forhold.