Københavns Erhvervsakademi

en

Data Science (EN)

2019/2020
Engelsk titel
Data Science (EN)
Uddannelse
Software udvikling
Uddannelsestype
Fuldtidsuddannelse
Niveau
Professionsbachelor (top-up)
Semester
5. semester
Fagets/modulets varighed
1 semester
Ects
10
Udd. element
Valgfag
Sprog
Engelsk
Opstart
Efterår
Forår
Studiested
Lygten 37, København NV
Fagkode
9942501
Fag- /modulansvarlig
Henrik Strøm
  • Formål

    The objective of the module is to qualify the student to apply data science methods in a structured manner, extract inferential knowledge from a dataset, and make probabilistic forecasts. In addition, the student must be able to report on the findings and make use of visualization.

    Viden

    The objective is to give the student knowledge of :
    • various definitions of the field of data science
    • designing experiments for data collection
    • using a framework for numerical computations
    • using a framework for general data analysis
    • using a framework for descriptive and inferential statistical analysis
    • using a framework for probabilistic forecasting
    • a variety of data analysis algorithms and their applications

    Færdigheder

    The objective is that the student will have acquired the ability to:
    • collect data from a variety of sources
    • organize data to prepare for analysis
    • explore data to gain insights
    • apply basic descriptive and inferential statistics
    • make forecasts using probabilistic machine learning tools
    • use methods to facilitate reproducibility
    • communicate findings in a written report, using visualizations

    Kompetencer

    • The objective is that the student will have acquired proficiency in participating and contributing in data science projects

  • Undervisningsform og udfoldelse af læringsmål
    The teaching is organised as a variation between class teaching, guest lecturing, company visits, group project work and individual work. The learning is most often problem-based and cross-disciplinary and always practise-oriented. In addition to learning the subject, the student will gain the competences to work individually and in collaboration with others.
    The common aim of the activities is always to set clear intended learning objectives.
  • Prøve

    Læringsmålene for prøven er identiske med fagets/fagenes læringsmål

    Faget prøves
    Faget/modulet prøves selvstændigt
    Prøveform
    Kombineret skriftlig og mundtlig prøve
    Individuel eller gruppeprøve
    Individuel
    Anvendt sprog til prøven
    Engelsk
    Varighed
    30 min
    Hjælpemidler der må medbringes
    None
    Hjælpemidler som stilles til rådighed
    None
    Bedømmelsesform
    7-trins skala
    Bedømmer(e)
    Intern censur
69
timers undervisning
205
timers forberedelse
Tallene viser omfanget af arbejdsbelastningen relateret til faget fordelt på forskellige studieaktiviteter.

På faget Data Science (EN) modtager du 69 timers undervisning, hvilket svarer til 92 lektioner (1 lektion = 45 min.) og 25% af din samlede arbejdsbelastning på faget.

Undervisningen vil primært bestå af følgende aktiviteter: klasseundervisning, virksomhedsbesøg, gruppearbejde.
Forberedelsen vil primært bestå af følgende aktiviteter: gruppearbejde.

Læs om KEAs studieaktivitetsmodel

*KEA kan fravige det angivne timetal, hvis det er begrundet i særlige forhold.